Sensor network localization has benign landscape under mild rank relaxation

November 29, 2024

Chris Criscitiello

with

Andrew McRae, Quentin Rebjock, Nicolas Boumal

OPTIM, Chair of Continuous Optimization Institute of Mathematics, EPFL

$$\min_{x \in \mathcal{M}} f(x)$$

Run local algorithm (gradient descent, trust regions, ...)

$$\min_{x \in \mathcal{M}} f(x)$$

Run local algorithm (gradient descent, trust regions, ...)

Will converge to 2-critical point (w/ prob 1)

[1-critical]
$$\nabla f(x) = 0$$

[2-critical]
$$\nabla f(x) = 0$$
 and $\nabla^2 f(x) \ge 0$

Stable manifold theorems
+
Łojasiewicz theorem

$$\min_{x \in \mathcal{M}} f(x)$$

Run local algorithm (gradient descent, trust regions, ...)

Will converge to 2-critical point (w/ prob 1)

[1-critical]
$$\nabla f(x) = 0$$

[2-critical]
$$\nabla f(x) = 0$$
 and $\nabla^2 f(x) \ge 0$

Stable manifold theorems
+
Łojasiewicz theorem

Goal: Show all 2-critical points *x* are global minima.

$$\min_{x \in \mathcal{M}} f(x)$$

Run local algorithm (gradient descent, trust regions, ...)

Will converge to 2-critical point (w/ prob 1)

[1-critical]
$$\nabla f(x) = 0$$

[2-critical]
$$\nabla f(x) = 0$$
 and $\nabla^2 f(x) \ge 0$

Goal: Show all 2-critical points x are global minima.

$$\min_{x \in \mathcal{M}} f(x)$$

Run local algorithm (gradient descent, trust regions, ...)

Will converge to 2-critical point (w/ prob 1)

[1-critical] $\nabla f(x) = 0$

[2-critical] $\nabla f(x) = 0$ and $\nabla^2 f(x) \ge 0$

Goal: Show all 2-critical points *x* are global minima.

Benign landscape

The problem

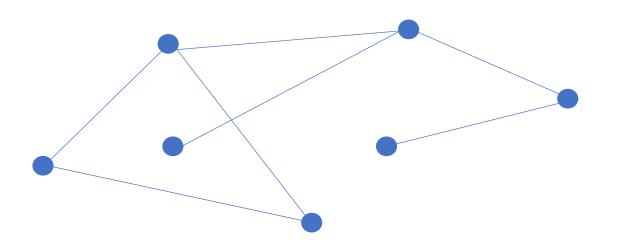
n unknown points $z_1^*, z_2^*, ..., z_n^*$ in \mathbb{R}^{ℓ} .

The problem

n unknown points $z_1^*, z_2^*, ..., z_n^*$ in \mathbb{R}^{ℓ} .

Know a subset of the pairwise distances (measurements)

$$d_{ij} = ||z_i^* - z_j^*|| \text{ for } ij \in E.$$



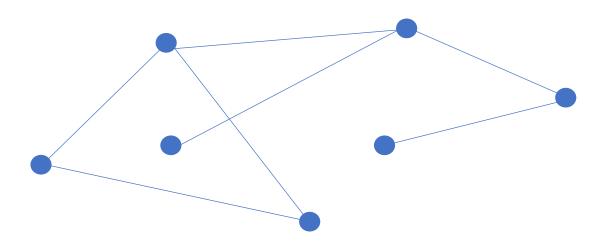
The problem

n unknown points $z_1^*, z_2^*, ..., z_n^*$ in \mathbb{R}^{ℓ} .

Know a subset of the pairwise distances (measurements)

$$d_{ij} = ||z_i^* - z_j^*|| \text{ for } ij \in E.$$

Goal: recover the *n* points (up to translation & rotation)



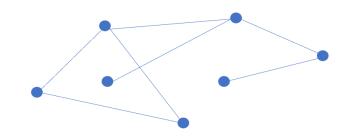
Applications

Robotics (sensor network localization), $\ell = 2,3$

Molecular conformation

Data analysis (metric multidimensional scaling)

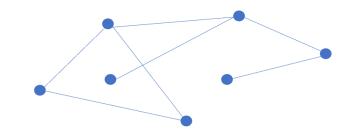
Graph theory (rigidity)



Global rigidity: Configuration space

$$\{z_1, z_2, \dots, z_n \in \mathbb{R}^{\ell} : d_{ij} = ||z_i - z_j||\}$$

should be a singleton (after quotienting).



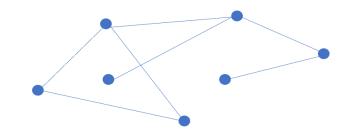
Global rigidity: Configuration space

$$\{z_1, z_2, \dots, z_n \in \mathbb{R}^{\ell} : d_{ij} = ||z_i - z_j||\}$$

should be a singleton (after quotienting).

NP-hard!

"Euclidean distance geometry and applications" -- Liberti, et al



Global rigidity: Configuration space

$$\{z_1, z_2, \dots, z_n \in \mathbb{R}^{\ell} : d_{ij} = ||z_i - z_j||\}$$

should be a singleton (after quotienting).

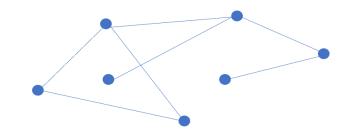
NP-hard!

"Euclidean distance geometry and applications" -- Liberti, et al

Universal rigidity: Configuration space

$$\{z_1, z_2, ..., z_n \in \mathbb{R}^k \text{ for all } k \ge \ell : d_{ij} = ||z_i - z_j||\}$$

should be a singleton (after quotienting).



Global rigidity: Configuration space

$$\{z_1, z_2, \dots, z_n \in \mathbb{R}^{\ell} : d_{ij} = ||z_i - z_j||\}$$

should be a singleton (after quotienting).

NP-hard!

"Euclidean distance geometry and applications" -- Liberti, et al

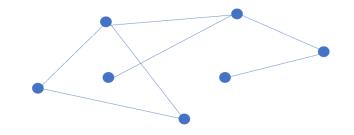
Universal rigidity: Configuration space

$$\{z_1, z_2, ..., z_n \in \mathbb{R}^k \text{ for all } k \ge \ell : d_{ij} = ||z_i - z_j||\}$$

should be a singleton (after quotienting).

Polynomial time by SDPs

"Theory of semidefinite programming for Sensor Network Localization" -- So, Ye



Global rigidity: Configuration space

$$\{z_1, z_2, \dots, z_n \in \mathbb{R}^{\ell} : d_{ij} = ||z_i - z_j||\}$$

should be a singleton (after quotienting).

NP-hard!

"Euclidean distance geometry and applications" -- Liberti, et al

Universal rigidity: Configuration space

Should Drawback: SDP involves
$$(n + \ell) \times (n + \ell)$$
 matrices

Polynomial time by SDPs

"Theory of semidefinite programming for Sensor Network Localization" -- So, Ye

Optimization problem

$$\min \sum_{ij \in E} \left(\left\| z_i - z_j \right\|^2 - d_{ij}^2 \right)^2, \qquad d_{ij} = \left\| z_i^* - z_j^* \right\|$$

$$\text{over } z_1, z_2, \dots, z_n \in \mathbb{R}^\ell$$
"Sectrosian"

Optimization problem

$$\min \sum_{ij \in E} \left(\left\| z_i - z_j \right\|^2 - d_{ij}^2 \right)^2, \qquad d_{ij} = \left\| z_i^* - z_j^* \right\|$$
 over $z_1, z_2, \dots, z_n \in \mathbb{R}^\ell$ "s-stress"

Solved via local algorithms. Guarantees?

Nonconvex! How bad?

Optimization problem

$$\min \sum_{ij \in E} \left(\left\| z_i - z_j \right\|^2 - d_{ij}^2 \right)^2, \qquad d_{ij} = \left\| z_i^* - z_j^* \right\|$$
 over $z_1, z_2, \dots, z_n \in \mathbb{R}^\ell$ "s-stress"

Solved via local algorithms. Guarantees?

Nonconvex! How bad?

Possible variations: Noisy measurements, landmarks, ...

Our focus: (nearly) complete graphs, no noise

Synthetic experiments, complete graph

Recipe (all distances known):

- (1) Choose ground truths $z_1^*, z_2^*, ..., z_n^*$ at random (normal iid)
- (2) Run gradient descent/trust regions/etc.
- (3) Find global min?
- (4) Repeat

Synthetic experiments, complete graph

Recipe (all distances known):

- (1) Choose ground truths $z_1^*, z_2^*, ..., z_n^*$ at random (normal iid)
- (2) Run gradient descent/trust regions/etc.
- (3) Find global min?
- (4) Repeat

Always finds global min!

Synthetic experiments, complete graph

Recipe (all distances known):

- (1) Choose ground truths $z_1^*, z_2^*, ..., z_n^*$ at random (normal iid)
- (2) Run gradient descent/trust regions/etc.
- (3) Find global min?
- (4) Repeat

Always finds global min!

Open Question: Does s-stress have spurious local minima? Are all 2-critical points global minima?

* Malone & Trosset 2000, Parhizkar 2013, etc.

s-stress can have spurious strict local minima!

Ground truth $z_1^*, z_2^*, ...$

 z_2^*, \dots Spurious configuration z_1, z_2, \dots

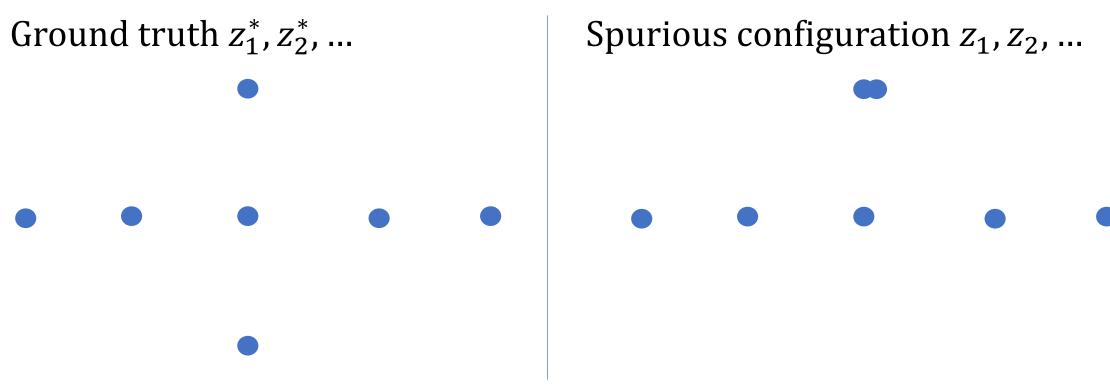
s-stress can have spurious strict local minima!

Ground truth $z_1^*, z_2^*, ...$

Spurious configuration $z_1, z_2, ...$

Also see: Song, Goncalves, Jung, Lavor, Mucherino, Wolkowicz, 2024

s-stress can have spurious strict local minima!



Set of ground truths with spurious local minima has positive measure

s-stress can have spurious strict local minima!

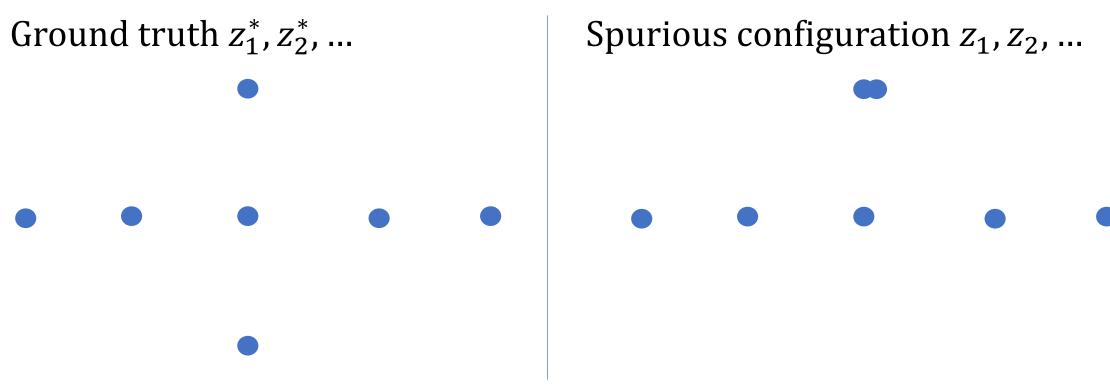
Ground truth z_1^*, z_2^*, \dots

Spurious configuration $z_1, z_2, ...$

Landscape is not benign, so we have to do something! What?

Set of ground truths with spurious local minima has positive measure

s-stress can have spurious strict local minima!



Set of ground truths with spurious local minima has positive measure

$$\min \sum_{ij \in E} (\|z_i - z_j\|^2 - d_{ij}^2)^2, \qquad d_{ij} = \|z_i^* - z_j^*\|$$

over $z_1, z_2, \dots, z_n \in \mathbb{R}^{\ell}$

$$\min \sum_{ij \in E} (\|z_i - z_j\|^2 - d_{ij}^2)^2, \qquad d_{ij} = \|z_i^* - z_j^*\|$$

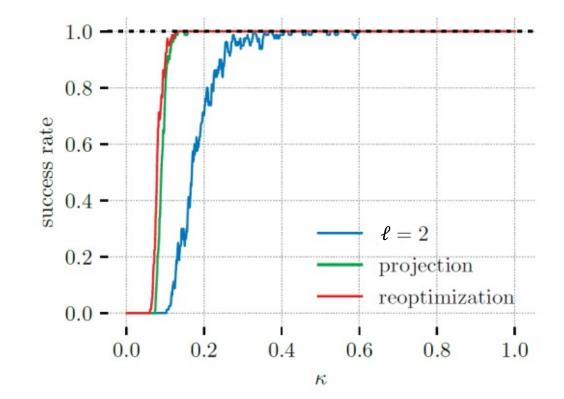
over $z_1, z_2, ..., z_n \in \mathbb{R}^k$

Relax to dimension $k > \ell$

$$\min \sum_{ij \in E} (\|z_i - z_j\|^2 - d_{ij}^2)^2, \qquad d_{ij} = \|z_i^* - z_j^*\|$$

over $z_1, z_2, ..., z_n \in \mathbb{R}^k$

Relax to dimension $k > \ell$



$$n = 100$$

$$\ell = 2$$

$$k = 4$$

$$\kappa$$
 = edge density (Erdos-Renyi)

$$\min \sum_{ij \in E} (\|z_i - z_j\|^2 - d_{ij}^2)^2, \qquad d_{ij} = \|z_i^* - z_j^*\|$$
over $z_1, z_2, ..., z_n \in \mathbb{R}^k$

Relax to dimension $k > \ell$

Minimizer of relaxed problem same as original? Yes if graph is complete (or more generally if it is *universally rigid*)

$$\min \sum_{ij \in E} \left(\left\| z_i - z_j \right\|^2 - d_{ij}^2 \right)^2, \qquad d_{ij} = \left\| z_i^* - z_j^* \right\|$$

$$\text{over } z_1, z_2, \dots, z_n \in \mathbb{R}^k$$

Relax to dimension $k > \ell$

Minimizer of relaxed problem same as original? Yes if graph is complete (or more generally if it is *universally rigid*)

Want k small; new problem has kn variables

$$\min \sum_{ij \in E} \left(\left\| z_i - z_j \right\|^2 - d_{ij}^2 \right)^2, \qquad d_{ij} = \left\| z_i^* - z_j^* \right\|$$

$$\text{over } z_1, z_2, \dots, z_n \in \mathbb{R}^k$$

Relax to dimension $k > \ell$

Minimizer of relaxed problem same as original? Yes if graph is complete (or more generally if it is *universally rigid*)

Want k small; new problem has kn variables If k = n - 1, easy to see landscape is benign (Song, Goncalves, Jung, Lavor, Mucherino, Wolkowicz, 2024) Can we do better?

Theorem [arbitrary GT]: If graph is complete and relax to $k \approx \ell + \sqrt{n\ell}$,

then every 2-critical point is the ground truth.

Theorem [arbitrary GT]: If graph is complete and relax to

$$k \approx \ell + \sqrt{n\ell}$$
,

then every 2-critical point is the ground truth.

Theorem [isotropic GT]: If graph is nearly complete*, ground truth points are isotropic* and iid, and relax to

$$k \approx \ell + \log(n)$$
,

then every 2-critical point is the ground truth, w.h.p.

Theorem [arbitrary GT]: If graph is complete and relax to

$$k \approx \ell + \sqrt{n\ell}$$
,

then every 2-critical point is the ground truth.

Theorem [isotropic GT]: If graph is nearly complete*, ground truth points are isotropic* and iid, and relax to

$$k \approx \ell + \log(n)$$
,

then every 2-critical point is the ground truth, w.h.p.

Conjecture [arbitrary GT]: Relaxing to $k = \ell + 1$ is enough.

Conjecture [isotropic GT]: Relaxing is not necessary.

Theorem [arbitrary GT]: If graph is complete and relax to

$$k \approx \ell + \sqrt{n\ell}$$
,

then every 2-critical point is the ground truth.

Theorem [isotropic GT]: If graph is nearly complete*, ground truth points are isotropic* and iid, and relax to

$$k \approx \ell + \log(n)$$
,

then every 2-critical point is the ground truth, w.h.p.

Conjecture [arbitrary GT]: Relaxing to $k = \ell + 1$ is enough.

Conjecture [isotropic GT]: Relaxing is not necessary.

- True if $n \le \ell + 3$
- Numerical optim to explicitly search for counterexamples.

Results

Theorem [arbitrary GT]: If graph is complete and relax to

$$k \approx \ell + \sqrt{n\ell}$$

then every 2-critical point is the ground truth.

Theorem [isotropic GT]: If graph is nearly complete*, ground truth points are isotropic* and iid, and relax to

$$k \approx \ell + \log(n)$$
,

then every 2-critical point is the ground truth, w.h.p.

Conjecture [arbitrary GT]: Relaxing to $k = \ell + 1$ is enough.

Conjecture [isotropic GT]: Relaxing is not necessary.

- True if $n \le \ell + 3$
- Numerical optim to explicitly search for counterexamples.

Ground truth $z_1^*, z_2^*, ...$ in dimension ℓ

Ground truth $z_1^*, z_2^*, ...$ in dimension ℓ

1-critical configuration in dimension $k > \ell$

Ground truth $z_1^*, z_2^*, ...$ in dimension ℓ

1-critical configuration in dimension $k > \ell$

Goal: perturb 1-critical configuration to decrease cost

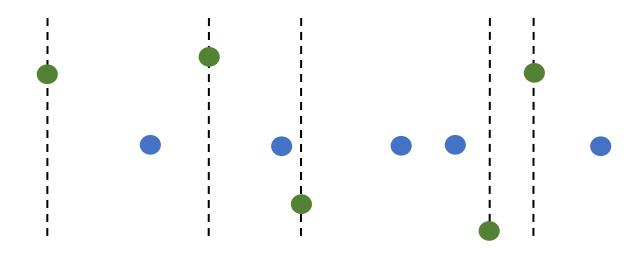
Goal: perturb 1-critical configuration to decrease cost

Goal: perturb 1-critical configuration to decrease cost

$$R = \operatorname{argmin}_{R} \sum_{i} ||z_{i}^{*} - Rz_{i}||^{2}, \quad R \in \mathbb{R}^{\ell \times k}$$

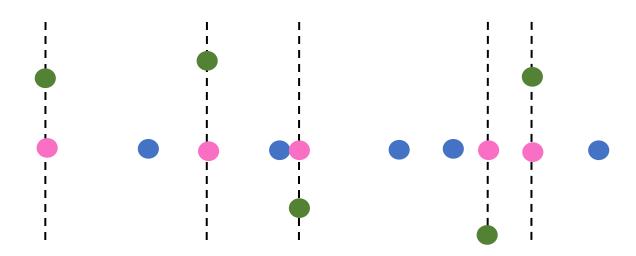
Goal: perturb 1-critical configuration to decrease cost

$$R = \operatorname{argmin}_{R} \sum_{i} ||z_{i}^{*} - Rz_{i}||^{2}, \quad R \in \mathbb{R}^{\ell \times k}$$



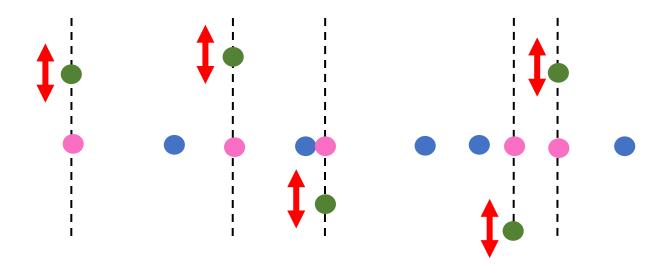
Goal: perturb 1-critical configuration to decrease cost

$$R = \operatorname{argmin}_{R} \sum_{i} ||z_{i}^{*} - Rz_{i}||^{2}, \quad R \in \mathbb{R}^{\ell \times k}$$



Goal: perturb 1-critical configuration to decrease cost

$$R = \operatorname{argmin}_{R} \sum_{i} ||z_{i}^{*} - Rz_{i}||^{2}, \quad R \in \mathbb{R}^{\ell \times k}$$



Alternative perspective: Low-Rank Optimization

$$Z = \begin{pmatrix} z_1^\mathsf{T} \\ \vdots \\ z_n^\mathsf{T} \end{pmatrix} \in \mathbb{R}^{n \times \ell}, \qquad Z_* = \begin{pmatrix} z_1^{*\mathsf{T}} \\ \vdots \\ z_n^{*\mathsf{T}} \end{pmatrix} \in \mathbb{R}^{n \times \ell}$$

$$Z = \begin{pmatrix} z_1^\mathsf{T} \\ \vdots \\ z_n^\mathsf{T} \end{pmatrix} \in \mathbb{R}^{n \times \ell}, \qquad Z_* = \begin{pmatrix} z_1^{*\mathsf{T}} \\ \vdots \\ z_n^{*\mathsf{T}} \end{pmatrix} \in \mathbb{R}^{n \times \ell}$$

Gram matrices $Y = ZZ^{T}$, $Y_{*} = Z_{*}Z_{*}^{T}$

$$Z = \begin{pmatrix} z_1^\mathsf{T} \\ \vdots \\ z_n^\mathsf{T} \end{pmatrix} \in \mathbb{R}^{n \times \ell}, \qquad Z_* = \begin{pmatrix} z_1^{*\mathsf{T}} \\ \vdots \\ z_n^{*\mathsf{T}} \end{pmatrix} \in \mathbb{R}^{n \times \ell}$$

Gram matrices $Y = ZZ^{T}$, $Y_{*} = Z_{*}Z_{*}^{T}$

MDS map Δ : Sym $(n) \rightarrow \text{Hollow}(n)$

Gram → EDM (euclidean distance matrix)

$$ij$$
-entry = $\langle z_i, z_j \rangle$ ij -entry = $||z_i - z_j||^2$

$$Z = \begin{pmatrix} z_1^\mathsf{T} \\ \vdots \\ z_n^\mathsf{T} \end{pmatrix} \in \mathbb{R}^{n \times \ell}, \qquad Z_* = \begin{pmatrix} z_1^{*\mathsf{T}} \\ \vdots \\ z_n^{*\mathsf{T}} \end{pmatrix} \in \mathbb{R}^{n \times \ell}$$

Gram matrices
$$Y = ZZ^{\mathsf{T}}$$
, $Y_* = Z_*Z_*^{\mathsf{T}}$

MDS map
$$\Delta$$
: Sym $(n) \rightarrow \text{Hollow}(n)$

$$ij$$
-entry = $\langle z_i, z_j \rangle$ ij -entry = $||z_i - z_j||^2$

$$[\Delta(Y)]_{ij} := Y_{ii} + Y_{jj} - 2Y_{ij}$$

$$\min \|\Delta(ZZ^{\mathsf{T}} - Z_*Z_*^{\mathsf{T}})\|^2 \text{ over } Z \in \mathbb{R}^{n \times \ell}$$

"s-stress"

$$\min \|\Delta(ZZ^{\mathsf{T}} - Z_*Z_*^{\mathsf{T}})\|^2 \text{ over } Z \in \mathbb{R}^{n \times \ell}$$

Burer-Monteiro factorization!

 $\min \|\Delta(Y - Y_*)\|^2 \text{ over } Y \ge 0 \text{ with } \operatorname{rank}(Y) \le \ell$

$$\min \|\Delta(ZZ^{\top} - Z_*Z_*^{\top})\|^2 \text{ over } Z \in \mathbb{R}^{n \times \ell}$$

$$\lim_{X \to \infty} \|\Delta(Y - Y_*)\|^2 \text{ over } Y \geq 0 \text{ with } \operatorname{rank}(Y) \leq \ell$$

$$\lim_{X \to \infty} \|\Delta(Y - Y_*)\|^2 \text{ over } Y \geq 0 \text{ with } \operatorname{rank}(Y) \leq k$$

• If k = n, problem is convex (1-critical points are global mins)

- If k = n, problem is convex (1-critical points are global mins)
- Map $Z \mapsto ZZ^{\mathsf{T}}$ is $2 \Longrightarrow 1$, i.e., 2-critical points map to 1-critical points

[Levin, Kileel, Boumal 2022; Ha, Liu, Barber 2018]

- If k = n, problem is convex (1-critical points are global mins)
- Map $Z \mapsto ZZ^{\top}$ is $2 \Longrightarrow 1$, i.e., 2-critical points map to 1-critical points [Levin, Kileel, Boumal 2022; Ha, Liu, Barber 2018]
- Conclusion: Landscape benign if k = n

Restricted Isometry Property?

 $\min \|\Delta(Y - Y_*)\|^2 \text{ over } Y \ge 0 \text{ with } \operatorname{rank}(Y) \le k$

Restricted Isometry Property?

$$\min \|\Delta(Y - Y_*)\|^2 \text{ over } Y \ge 0 \text{ with } \operatorname{rank}(Y) \le k$$

Restricted Isometry Property (RIP):

$$||Y||_F^2 \le ||\Delta(Y)||_F^2 \le 3||Y||_F^2$$
 for all Y s. t. rank $(Y) \le 2k$.

If RIP, then benign landscape [Bhojanapalli et al., 2016; Ge et al., 2017; Zhang et al., 2019]

Restricted Isometry Property?

$$\min \|\Delta(Y - Y_*)\|^2 \text{ over } Y \ge 0 \text{ with } \operatorname{rank}(Y) \le k$$

Restricted Isometry Property (RIP):

$$||Y||_F^2 \le ||\Delta(Y)||_F^2 \le 3||Y||_F^2$$
 for all Y s. t. rank $(Y) \le 2k$.

If RIP, then benign landscape [Bhojanapalli et al., 2016; Ge et al., 2017; Zhang et al., 2019]

 Δ does not satisfy RIP! Δ has RIP-condition-number n

 $\min \|\Delta(Y - Y_*)\|^2 \text{ over } Y \ge 0 \text{ with } \operatorname{rank}(Y) \le k$

 $\min \|\Delta(Y - Y_*)\|^2 \text{ over } Y \ge 0 \text{ with } \operatorname{rank}(Y) \le k$

Special "perturbation" of the identity

$$(\Delta^* \circ \Delta)(Y) = Y + \Theta(Y)$$

$$(\Delta^* \circ \Delta)^{-1}(Y) = Y - \Gamma(Y)$$

 $\min \|\Delta(Y - Y_*)\|^2 \text{ over } Y \ge 0 \text{ with } \operatorname{rank}(Y) \le k$

Special "perturbation" of the identity

$$(\Delta^* \circ \Delta)(Y) = Y + \Theta(Y)$$
$$(\Delta^* \circ \Delta)^{-1}(Y) = Y - \Gamma(Y)$$

New "general" theorem: If Γ is completely positive, contractive, and satisfies

- $a^{\mathsf{T}}\Gamma(ab^{\mathsf{T}} + ba^{\mathsf{T}})b \leq 2a^{\mathsf{T}}\Gamma(bb^{\mathsf{T}})a \quad \forall a, b \in \mathbb{R}^n$
- $\langle Y, \Theta(Y) \rangle \leq c \langle Y, \Gamma(Y) \rangle \quad \forall Y$

then landscape is benign when relax to $k \approx \ell + \sqrt{c\ell}$.

$$\min \|\Delta(Y - Y_*)\|^2 \text{ over } Y \ge 0 \text{ with } \operatorname{rank}(Y) \le k$$

$$(\Delta^* \circ \Delta)(Y) = Y + \Theta(Y)$$

$$(\Delta^* \circ \Delta)^{-1}(Y) = Y - \Gamma(Y)$$

New "general" theorem: If Γ is completely positive, contractive, and satisfies

- $a^{\mathsf{T}}\Gamma(ab^{\mathsf{T}} + ba^{\mathsf{T}})b \leq 2a^{\mathsf{T}}\Gamma(bb^{\mathsf{T}})a \quad \forall a, b \in \mathbb{R}^n$
- $\langle Y, \Theta(Y) \rangle \leq c \langle Y, \Gamma(Y) \rangle \quad \forall Y$

then landscape is benign when relax to $k \approx \ell + \sqrt{c\ell}$.

E.g.,
$$\Gamma(Y) = \sum_{i=1}^{N} a_i a_i^{\mathsf{T}} (a_i^{\mathsf{T}} Y a_i)$$
 with $a_i \in \mathbb{R}^n$

Takeaways

Summary:

- s-stress can have spurious local mins (even for complete graph)
- If relax mildly $(\sqrt{n} \ or \log n)$, s-stress landscape becomes benign

Takeaways

Summary:

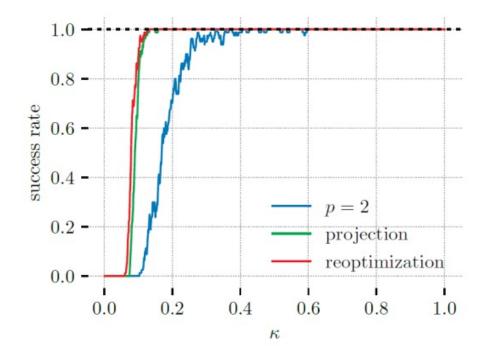
- s-stress can have spurious local mins (even for complete graph)
- If relax mildly $(\sqrt{n} \ or \log n)$, s-stress landscape becomes benign

Conceptual takeaways:

- Low-dimensional nonconvex relaxations (cheap and often work!)
- Going beyond RIP: structured "perturbations"

Open questions

- Conjecture [arbitrary GT]: Relaxing to $k = \ell + 1$ is enough.
- Conjecture [isotropic GT]: Relaxing is not necessary.
- Many other localization problems (trajectory localization, inverse kinemetics, ...)
- Incomplete graphs (random, expanders, ...)



Conclusion

Conceptual takeaways:

- Low-dimensional nonconvex relaxations (cheap and often work!)
- Going beyond RIP: structured "perturbations"

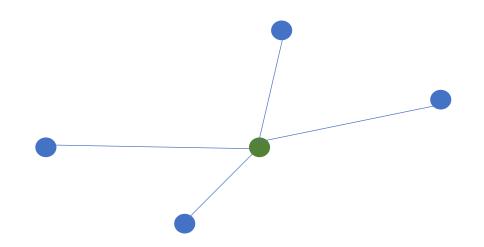
Open Questions:

- Conjecture [arbitrary GT]: Relaxing to $k = \ell + 1$ is enough.
- Conjecture [isotropic GT]: Relaxing is not necessary.
- Incomplete graphs (random, expanders, ...)
- Many other localization problems (trajectory localization, inverse kinemetics, ...)
- More general theory to analyze landscapes?

Appendix

SNL with landmarks

$$\min \sum_i \left(\|z - z_i\|^2 - d_i^2 \right)^2, \qquad d_i = \|z^* - z_i^*\|$$
 over $z \in \mathbb{R}^\ell$



SNL with landmarks

$$\min \sum_i \left(\|z - z_i\|^2 - d_i^2 \right)^2, \qquad d_i = \|z^* - z_i^*\|$$
 over $z \in \mathbb{R}^\ell$

Landscape is not benign in general.

SNL with landmarks

$$\min \sum_i \left(\|z-z_i\|^2 - d_i^2 \right)^2, \qquad d_i = \|z^* - z_i^*\|$$
 over $z \in \mathbb{R}^\ell$

Landscape is not benign in general.

Proposition: If relax to $k = \ell + 1$, the landscape is benign.

Hubs

Theorem [isotropic GT]: If graph is **nearly complete**, ground truth points are isotropic and iid, and relax to

$$k \approx \ell \log(n)$$
,

then every 2-critical point is the ground truth.

The **hub** of a graph is the set of vertices which are connected to all other vertices.

$$H = \text{size of hub}$$

Theorem [isotropic GT]: If ground truth points are isotropic and iid, and relax to

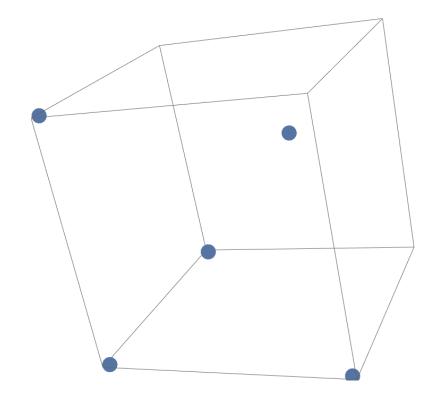
$$k \approx \text{poly}(n-H)\ell \log(n)$$
,

then every 2-critical point is the ground truth.

Counterexamples

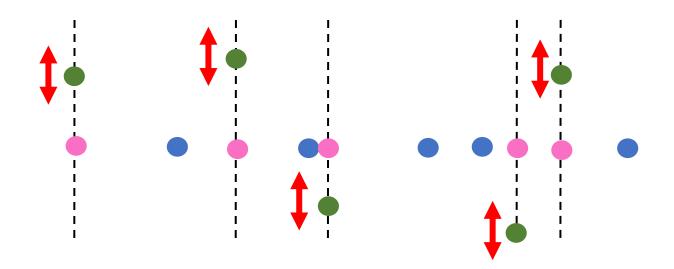
Minima number of points to have spurious local minima?

$$n = \ell + 2 \text{ (for } \ell \geq 5\text{)}$$



If relax enough, many ways to perturb this way

Use **eigenvalue interlacing** to argue that a good one exists, if relax enough



If relax enough, many ways to perturb this way

Use **eigenvalue interlacing** to argue that a good one exists, if relax enough

For **isotropic GT**, $k \approx \ell \log(n)$, similar descent direction

Randomize over descent directions (instead of eigenvalue interlacing)

Can we apply Kirwan convexity, or similar?

$$\min \|\Delta(ZZ^{\mathsf{T}} - Z_*Z_*^{\mathsf{T}})\|^2 \text{ over } Z \in \mathbb{R}^{n \times \ell}$$

$$\min \|ZZ^{\mathsf{T}} - Z_*Z_*^{\mathsf{T}}\|^2 \text{ over } Z \in \mathbb{R}^{n \times \ell} \text{ (with trace}(ZZ^{\mathsf{T}}) = 1)$$

• Kirwan: K = U(n) acts on projective space $\mathbb{P}(\mathbb{C}^{n \times \ell})$

No index-1 critical points if relax to $k = \ell + 2$?

• Seems to be a common phenomenon when relaxing dimension

[Index = number of negative eigenvalues of Hessian]