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Landscape	analysis
min
!∈ℳ

𝑓 𝑥

Run	local	algorithm	(gradient	descent,	trust	regions,	…)

Will	converge	to	2-critical	point	(w/	prob	1)

[1-critical]	∇𝑓 𝑥 = 0

[2-critical]	∇𝑓 𝑥 = 0 and	∇𝑓 𝑥 ≽ 0

Goal:	Show	all	2-critical	points	𝑥 are	global	minima.
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The	problem
𝑛 unknown	points	𝑧!∗, 𝑧#∗, … , 𝑧$∗ in	ℝℓ.
Know	a	subset	of	the	pairwise	distances	(measurements)

𝑑&' = ‖𝑧&∗ − 𝑧'∗‖ for	𝑖𝑗 ∈ 𝐸.
Goal:	recover	the	𝑛 points	(up	to	translation	&	rotation)
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Applications

Robotics	(sensor	network	localization),	ℓ = 2,3

Molecular	conformation

Data	analysis	(metric	multidimensional	scaling)

Graph	theory	(rigidity)



When	is	recovery	possible?
Global	rigidity:	Configuration	space

{𝑧%, 𝑧$, … , 𝑧& ∈ ℝℓ ∶ 𝑑() = 𝑧( − 𝑧) }
should	be	a	singleton	(after	quotienting).
NP-hard!

“Euclidean	distance	geometry	and	applications”	-- Liberti,	et	al

Universal	rigidity:	Configuration	space
{𝑧%, 𝑧$, … , 𝑧& ∈ ℝ* for all 𝑘 ≥ ℓ: 𝑑() = 𝑧( − 𝑧) }

should	be	a	singleton	(after	quotienting).
Polynomial	time	by	SDPs

“Theory	of	semidefinite	programming	for	Sensor	Network	Localization”	-- So,	Ye
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Optimization	problem

min $
!"∈$

𝑧! − 𝑧"
%
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%
, 𝑑!" = ‖𝑧!∗ − 𝑧"∗‖

over	𝑧', 𝑧%, … , 𝑧( ∈ ℝℓ

Solved	via	local	algorithms.		Guarantees?

Nonconvex!		How	bad?

Possible	variations:	Noisy	measurements,	landmarks,	…

Our	focus:	(nearly)	complete	graphs,	no	noise

“s-stress”
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Synthetic	experiments,	complete	graph
Recipe	(all	distances	known):
(1)	Choose	ground	truths	𝑧%∗, 𝑧$∗, … , 𝑧&∗ at	random	(normal	iid)
(2)	Run	gradient	descent/trust	regions/etc.
(3)	Find	global	min?
(4)	Repeat

Always	finds	global	min!

Open	Question:	Does	s-stress	have	spurious	local	minima?		Are	all	2-critical	
points	global	minima?
*	Malone	&	Trosset 2000,	Parhizkar 2013,	etc.
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Counterexamples
s-stress	can	have	spurious	strict	local	minima!

Ground	truth	𝑧!∗, 𝑧#∗, … Spurious	configuration	𝑧!, 𝑧#, …

Set	of	ground	truths	with	spurious	local	minima	has	positive	measure
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Nonconvex	relaxation
min $
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𝑧! − 𝑧"
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%
, 𝑑!" = ‖𝑧!∗ − 𝑧"∗‖

over	𝑧', 𝑧%, … , 𝑧( ∈ ℝℓ

Relax	to	dimension	𝑘 > ℓ

Minimizer	of	relaxed	problem	same	as	original?
Yes	if	graph	is	complete	(or	more	generally	if	it	is	universally	rigid)

Want	𝑘 small;	new	problem	has	𝑘𝑛 variables
If	𝑘 = 𝑛 − 1,	landscape	is	benign	(later)
Can	we	do	better?
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𝑛 = 100
ℓ = 2
𝑘 = 4

𝜅 = edge	density	
(Erdos-Renyi)

ℓ
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Results
Theorem	[arbitrary	GT]:	If	graph	is	complete	and	relax	to

𝑘 ≈ ℓ + 𝑛ℓ,
then	every	2-critical	point	is	the	ground	truth.

Theorem	[isotropic	GT]:	If	graph	is	nearly	complete*,	ground	truth	points	are	
isotropic	and	iid,	and	relax	to

𝑘 ≈ ℓ log 𝑛 ,
then	every	2-critical	point	is	the	ground	truth.

Conjecture [arbitrary	GT]:	Relaxing	to	𝑘 = ℓ + 1 is	enough.
Conjecture [isotropic	GT]:	Relaxing	is	not	necessary.
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Ground	truth	𝑧%∗, 𝑧$∗, … in	dimension	ℓ

1-critical	configuration	in	dimension	𝑘 > ℓ

Goal:	perturb	1-critical	configuration	to	decrease	cost
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Alternative	perspective:
a

Low-Rank	Optimization
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Restricted	Isometry	Property?
min Δ 𝑌 − 𝑌∗ # over	𝑌 ≽ 0with	rank 𝑌 ≤ 𝑘

Restricted	Isometry	Property	(RIP):

𝑌 1
# ≤ Δ 𝑌 1

# ≤ 3 𝑌 1
# for all 𝑌 s. t. rank 𝑌 ≤ 2𝑘.

If	RIP,	then	benign	landscape	[Bhojanapalli et	al.,	2016;	Ge	et	al.,	2017;	Zhang	et	al.,	2019]

Δ is	not	RIP!			Δ∗ ∘ Δ has	RIP-condition-number	𝑛
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Restricted	Isometry	Property	(RIP):

𝑌 1
# ≤ Δ 𝑌 1

# ≤ 3 𝑌 1
# for all 𝑌 s. t. rank 𝑌 ≤ 2𝑘.

If	RIP,	then	benign	landscape	[Bhojanapalli et	al.,	2016;	Ge	et	al.,	2017;	Zhang	et	al.,	2019]

Δ does	not	satisfy	RIP!		Δ has	RIP-condition-number	𝑛



Special	properties	of	MDS	map?
min Δ 𝑌 − 𝑌∗ # over	𝑌 ≽ 0with	rank 𝑌 ≤ 𝑘

Special	“perturbation”	of	the	identity
Δ∗ ∘ Δ 𝑌 = 𝑌 + Θ 𝑌
Δ∗ ∘ Δ 2! 𝑌 = 𝑌 − Γ 𝑌

New	“general”	theorem:	If	Γ is	completely	positive,	contractive,	and	
satisfies
• 𝑎(Γ 𝑎𝑏( + 𝑏𝑎( 𝑏 ≤ 2𝑎(Γ 𝑏𝑏( 𝑎 ∀𝑎, 𝑏 ∈ ℝ$

• 𝑌, Θ 𝑌 ≤ 𝑐 𝑌, Γ 𝑌 ∀𝑌
then	landscape	is	benign	when	relax	to	𝑘 ≈ ℓ + 𝑐ℓ.
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Takeaways
Summary:
• s-stress	can	have	spurious	local	mins	(even	for	complete	graph)
• If	relax	mildly	( 𝑛 𝑜𝑟 log 𝑛),	s-stress	landscape	becomes	benign

Conceptual	takeaways:
• Low-dimensional	nonconvex	relaxations	(cheap	and	often	work!)
• Going beyond RIP: structured “perturbations”
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Open	questions
• Conjecture [arbitrary	GT]:	Relaxing	to	𝑘 = ℓ + 1 is	enough.
• Conjecture [isotropic	GT]:	Relaxing	is	not	necessary.

• Many	other	localization	problems	(trajectory	localization,	inverse	kinemetics,	…)
• Incomplete	graphs	(random,	expanders,	…)
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Conceptual	takeaways:
• Low-dimensional	nonconvex	relaxations	(cheap	and	often	work!)
• Going beyond RIP: structured “perturbations”

Open	Questions:

• Conjecture [arbitrary	GT]:	Relaxing	to	𝑘 = ℓ + 1 is	enough.
• Conjecture [isotropic	GT]:	Relaxing	is	not	necessary.

• Incomplete	graphs	(random,	expanders,	…)
• Many	other	localization	problems	(trajectory	localization,	inverse	kinemetics,	…)
• More	general	theory	to	analyze landscapes?
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SNL	with	landmarks

min$
!

𝑧 − 𝑧! % − 𝑑!%
%
, 𝑑! = ‖𝑧∗ − 𝑧!∗‖

over	𝑧 ∈ ℝℓ

Solved	via	local	algorithms.		Guarantees?

Nonconvex!		How	bad?

Possible	variations:	Noisy	measurements,	landmarks,	…

Our	focus:	(nearly)	complete	graphs,	no	noise
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Hubs
Theorem	[isotropic	GT]:	If	graph	is	nearly	complete,	ground	truth	points	are	
isotropic	and	iid,	and	relax	to

𝑘 ≈ ℓ log 𝑛 ,
then	every	2-critical	point	is	the	ground	truth.

The	hub of	a	graph	is	the	set	of	vertices	which	are	connected	to	all	other	
vertices.

𝐻 = size of hub

Theorem	[isotropic	GT]:	If	ground	truth	points	are	isotropic	and	iid,	and	relax	
to

𝑘 ≈ poly 𝑛 − 𝐻 ℓ log 𝑛 ,
then	every	2-critical	point	is	the	ground	truth.



Counterexamples
Minima	number	of	points	to	have	spurious	local	minima?

𝑛 = ℓ + 2 (for	ℓ ≥ 5)



Some	ideas	from	the	proof
If	relax	enough,	many	ways	to	perturb	this	way

Use	eigenvalue	interlacing to	argue	that	a	good	one	exists,	if	relax	
enough

Somewhat	nonconstructive



Some	ideas	from	the	proof
If	relax	enough,	many	ways	to	perturb	this	way

Use	eigenvalue	interlacing to	argue	that	a	good	one	exists,	if	relax	
enough

Somewhat	nonconstructive

For isotropic	GT,	𝑘 ≈ ℓ log 𝑛 ,	similar	descent	direction

Randomize over	descent	directions	(instead	of	eigenvalue	interlacing)



Can	we	apply	Kirwan	convexity,	or	similar?
min Δ 𝑍𝑍( − 𝑍∗𝑍∗( # over	𝑍 ∈ ℝ$×ℓ

min 𝑍𝑍( − 𝑍∗𝑍∗( # over	𝑍 ∈ ℝ$×ℓ (with	trace 𝑍𝑍( = 1)
• Kirwan:	𝐾 = 𝑈 𝑛 acts	on	projective	space	ℙ ℂ$×ℓ

No	index-1	critical	points	if	relax	to	𝑘 = ℓ + 2?
• Seems	to	be	a	common	phenomenon	when	relaxing	dimension

[Index	=	number	of	negative	eigenvalues	of	Hessian]


