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Run local algorithm (gradient descent, trust regions, ...)

Will converge to 2-critical point (w/ prob 1)
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Goal: Show all 2-critical points x are global minima.
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The problem

n unknown points z}, z5, ..., z} in R’
Know a subset of the pairwise distances (measurements)
. * * .
dij = |lz; —zj|[ for ij € E.

Goal: recover the n points (up to translation & rotation)



Applications

Robotics (sensor network localization), £ = 2,3
Molecular conformation
Data analysis (metric multidimensional scaling)

Graph theory (rigidity)
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Global rigidity: Configuration space

(24,25, .., 2y € R : dij = Hzi — Zj”}
should be a singleton (after quotienting).
NP-hard!

“Euclidean distance geometry and applications” -- Liberti, et al

Universal rigidity: Configuration space
(24,25, ...,Z, € RF forall k > ¢: dij = Hzi — ZjH}

should be a singleton (after quotienting).
Polynomial time by SDPs

“Theory of semidefinite programming for Sensor Network Localization” -- So, Ye



When is recovery possible? S

Global rigidity: Configuration space
{21,25, ..., Z, € R? : dij = Hzi — Zj”}

should be a singleton (after quotienting).
NP-hard!

“Euclidean distance geometry and applications” -- Liberti, et al

Drawback: SDP involves (n + £)X(n + £) matrices
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Optimization problem

2
min z (lze —z|* - a?)", di; = |lz; — z|

ijEE

over Zq,Zy, ..., Zy € R?

Solved via local algorithms. Guarantees?
Nonconvex! How bad?
Possible variations: Noisy measurements, landmarks, ...

Our focus: (nearly) complete graphs, no noise
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Synthetic experiments, complete graph

Recipe (all distances known):

(1) Choose ground truths z7, z,, ..., z; at random (normal iid)
(2) Run gradient descent/trust regions/etc.

(3) Find global min?

(4) Repeat

Always finds global min!

Open Question: Does s-stress have spurious local minima? Are all 2-critical
points global minima?

* Malone & Trosset 2000, Parhizkar 2013, etc.



Counterexamples

s-stress can have spurious strict local minimal

Ground truth z{, z3, ... Spurious configuration z,, z,, ...
@) @
o @ @ 0 o @, o o o




Counterexamples

s-stress can have spurious strict local minimal

Ground truth z{, z3, ... Spurious configuration z,, z,, ...
o @
o @ o O o Q o @ S, o
o
Also see:

Song, Goncalves, Jung,

Lavor, Mucherino,
Wolkowicz, 2024




Counterexamples

s-stress can have spurious strict local minimal

Ground truth z{, z3, ... Spurious configuration z,, z,, ...
@) @

o @ @ 0 o @, o o S, o
@)

Set of ground truths with spurious local minima has positive measure



Landscape is not benign, so we have to do something!
What?
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Ground truth z{, z3, ... Spurious configuration z,, z,, ...
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Nonconvex relaxation
min 2 (”Zi — j”2 — dl-zj) , dij = |lz; — z ||
ijEE

over 21,2, ...,Zn €

Relax to dimension k > ¢

Minimizer of relaxed problem same as original?
Yes if graph is complete (or more generally if it is universally rigid)

Want k small; new problem has kn variables
If k =n — 1, easy to see landscape is benign (Song, Goncalves, Jung, Lavor, Mucherino, Wolkowicz, 2024 )
Can we do better?
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Some ideas from the proof

Goal: perturb 1-critical configuration to decrease cost

Best linear transformation z; » Rz; mapping 1-critical config to ground truth

R = argming ) ;||z; — Rzl-II2 . R e Rtxk

:



Alternative perspective:

Low-Rank Optimization
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Notation and reformulation

N
z] z3
Z=|: | e R™Y, Z,=| : |eR™
T
Z,I Z,;',‘L

Gram matricesY = ZZ',Y. = Z.Z!

MDS map A : Sym(n) — Hollow(n)
Gram — EDM (euclidean distance matrix)

ij-entry = (z;, z) ij-entry = ||z, - z|

[A(Y)]ij: =Yy +Y;; — 2V
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Notation and reformulation
min ||[A(ZZT — Z,ZD)||? over Z € R™**

!

min ||[A(Y — Y.)||? over Y = 0 with rank(Y) < #

l (relax)
min ||[A(Y — Y,)||? over Y = 0 with rank(Y) < k

o [fk = n, problem 1S convex (1-critical points are global mins)

e MapZ — ZZ" is 2 = 1, i.e., 2-critical points map to 1-critical points
[Levin, Kileel, Boumal 2022; Ha, Liu, Barber 2018]

* Conclusion: Landscape benignif k = n
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Restricted Isometry Property?
min ||[A(Y — Y,)||? over Y = 0 with rank(Y) < k

Restricted Isometry Property (RIP):

Y12 < IA()||2 < 3||Y||&  forall Y s.t.rank(Y) < 2k.
[f RIP, then benign landscape [Bhojanapalli et al., 2016; Ge et al., 2017; Zhang et al., 2019]

A does not satisfy RIP! A has RIP-condition-number n
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Special properties of MDS map?

min ||[A(Y — Y,)||? over Y = 0 with rank(Y) < k

(A o A)(Y) =Y + O(Y)
(A" o A)7H(Y) =Y = T(¥)

New “general” theorem: If I" is completely positive, contractive, and
satisfies

ca'T'(ab” + ba™)b <2a'T(bb")a Va b eR"
«(Y,0(Y)) < c(Y,I'(Y)) VY
then landscape is benign when relax to k = € + /c?.

Eg,T(Y) =YY a aT(aTYa ) with a; € R"




Takeaways

Summary:
* s-stress can have spurious local mins (even for complete graph)

o If relax mildly (/n or logn), s-stress landscape becomes benign



Takeaways

Summary:
* s-stress can have spurious local mins (even for complete graph)

o If relax mildly (/n or logn), s-stress landscape becomes benign

Conceptual takeaways:
* Low-dimensional nonconvex relaxations (cheap and often work!)
* Going beyond RIP: structured “perturbations”



Open questions

* Conjecture [arbitrary GT]: Relaxing to k = € + 1 is enough.
* Conjecture [isotropic GT]: Relaxing is not necessary.

* Many other localization problems (trajectory localization, inverse kinemetics, ...)
* Incomplete graphs (random, expanders, ...)
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Conclusion

Conceptual takeaways:
* Low-dimensional nonconvex relaxations (cheap and often work!)
* Going beyond RIP: structured “perturbations”

Open Questions:

* Conjecture [arbitrary GT]: Relaxing to k = £ + 1 is enough.
* Conjecture [isotropic GT]: Relaxing is not necessary.

* Incomplete graphs (random, expanders, ...)
* Many other localization problems (trajectory localization, inverse kinemetics, ...)
* More general theory to analyze landscapes?



Appendix



SNL with landmarks

minZ(llz —z;||? = dl-z)z ,
i

over z € R?

di = |lz* = z|
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SNL with landmarks

_ 2
min ) (lz - zlI? - d?)”, di = |lz* - Z||
[

over z € R?

Landscape is not benign in general.

Proposition: If relax to k = € + 1, the landscape is benign.



Hubs

Theorem [isotropic GT]: If graph is nearly complete, ground truth points are
isotropic and iid, and relax to
k ~ £log(n),

then every 2-critical point is the ground truth.

The hub of a graph is the set of vertices which are connected to all other
vertices.

H = size of hub

Theorem [isotropic GT]: If ground truth points are isotropic and iid, and relax
to

k ~ poly(n — H)?log(n),
then every 2-critical point is the ground truth.




Counterexamples

Minima number of points to have spurious local minima?

n=+4+4+ 2 (forf =5)
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Some ideas from the proof

[f relax enough, many ways to perturb this way

Use eigenvalue interlacing to argue that a good one exists, if relax
enough

For isotropic GT, k = £ log(n), similar descent direction

Randomize over descent directions (instead of eigenvalue interlacing)



Can we apply Kirwan convexity, or similar?
min ||[A(ZZT — Z,ZD)||? over Z € R™**

min [|ZZT — Z.Z]||? over Z € R™** (with trace(ZZ") = 1)

 Kirwan: K = U(n) acts on projective space IP((C"X{))

No index-1 critical points ifrelaxto k = € + 27

* Seems to be a common phenomenon when relaxing dimension

|[Index = number of negative eigenvalues of Hessian]



